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The propagation of plane hydromagnetic waves in a fluid rotating with angular 
velocity Q and permeated by a magnetic field B = (B,(z) , B,(z) , 0} varying in both 
magnitude and direction with z is studied by techniques recently applied to the 
propagation of internal gravity waves in a shear flow (Bretherton 1966; Booker & 
Bretherton 1967). Particular attention is paid to a class of ‘slow’ hydromagnetic 
waves of interest in connexion with the dynamics of the earth’s liquid core. 
While, in general, rotation permits propagation acroSs the lines of force, there is 
associated with each wave a ‘critical level’ z = z, which acts as a valve by effec- 
tively permitting the wave to penetrate it from one side only. A slow hydromag- 
netic wave with frequency w and wavenumber components k , l  normal to the 
magnetic field gradient can only effectively penetrate its critical level if its 
propagation speed across field lines W is such that WLI,(QZ,k+ Q2,Z)w < 0. The 
phenomenon of ‘ critical-layer absorption ’ evidently does not in general require 
the presence of a mean shear flow; a non-uniform magnetic field gives rise to 
similar effects provided that some other restoring mechanism (in this case the 
Coriolis force) is available to permit hydromagnetic waves to propagate across 
field lines. 

1. Introduction 
When the effects of viscous and ohmic dissipation may be ignored the propaga- 

tion of small amplitude plane hydromagnetic waves in an unbounded incom- 
pressible fluid rotating with constant angular velocity Q and permeated by a 
uniform magnetic field B is governed by the dispersion relationship 

(Lehnert 1954; Hide 1969). Here o is the angular frequency of the waves, 
K = (k, 1, m) is the wavenumber vector, K = 1.1 and 

v = B/(PP)) (1.2) 

is the Alfv6n velocity, where ,u is the magnetic permeability and p the fluid 
density (assumed uniform). 
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In  the absence of rotation (1.1) yields Alfvkn waves for which 

W = + V . K  (1.3) 

(see Alfv6n & Piilthammar 1963). A group of such waves propagates non-dis- 
persively along the lines of force with velocity h / a u  = V. According to (1 .1)  
rotation permits hydromagnetic wave groups to propagate across field lines and 
renders them dispersive. The character of the waves depends on the magnitude 
of the parameter 

and when Q < 1 the ‘rapid’ rotation has the effect of widely separating the roots 
of (1.1). One root is essentially an inertial wave (for which the restoring effect of 
the Coriolis force is dominant) which propagates very much faster than the 
Alfv6n speed by a factor of order Q-l: 

Q = VK~SL (1-4) 

0 = ? 2 9 . K / K  (1.5) 

(see Greenspan 1968). The other is a hybrid ‘ hydromagnetic-inertial’ wave 
(for which rotational and hydromagnetic restoring forces are equally important) 
which propagates very much slower than the Alfvkn speed by a factor of order Q-l: 

W 5 ( v . K ) ’ K / ( 2 8 . U ) .  (1.6) 

A certain amount of interest in hydromagnetic-inertial waves, and indeed in 
the whole comparatively undeveloped field of the magnetohydrodynamics of 
rotating fluids, has been stimulated recently by problems associated with the 
origin of the earth’s magnetism. Hide (1966) concluded that the effects of the 
earth’s rotation should be sufficiently strong for these slow hydromagnetic 
waves to propagate within the liquid core (Q N and that such waves should 
have periods commensurate with the (decades-to-centuries) time scale of the 
geomagnetic secular variation. Furthermore, by taking the effects of the spherical 
boundaries of the core into account by means of a simplified model, he suggested 
that those slow waves characterized by quasi-two-dimensional motions (in which 
fluid filaments parallel to the rotation axis move as coherent units) would propa- 
gate westward, and might accordingly contribute to the westward drift with 
time of the non-dipole geomagnetic field. 

While the results of subsequent analyses (Stewartson 1967; Malkus 1967) do 
not appear to deny that waves with such ‘Jilamentary’ motions will propagate 
westward in this way (Acheson 1971; Hide & Stewartson 1972) they make clear 
that three-dimensional modes of oscillation are possible and that these are not 
necessarily characterized by westward propagation. The present author has 
recently proposed a westward selection mechanism invoking hydromagnetic 
instabilities in a rotating fluid arising from spatial variations in the magnetic field 
(Acheson 1972a). (The magnetic field within the core of the earth is believed to be 
predominantly azimuthal, increasing from about 5 gauss in the neighbourhood of 
the core-mantle boundary to perhaps 100 gauss or so deeper within the core.) 
This paper is concerned with another effect due to spatial variations in the 
magnetic field, namely the restrictions such variations can impose on the propa- 
gation of hydromagnetic waves acro.ss field lines which, as we have already seen, 
takes place only by virtue of the rotation. 
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2. Equations of the problem 
The basic equations of magnetohydrodynamics for a perfectly conducting, 

inviscid incompressible fluid of uniform density p referred to a co-ordinate system 
rotating with angular velocity S2 are 

au 1 1 
- + ( ( u . V ) U + ~ S ~ X U  = - -Vp+-(VxB)xB,  
at P ,UP 

v . u  = 0, (2.2) 

V.B = 0, 

aB/at = V x (U x B), 

where u denotes the Eulerian flow velocity relative to the rotating frame, p the 
pressure in excess of that required to balance the centrifugal force, B the magnetic 
field, p magnetic permeability and t time (see Shercliff 1965; Hide 1969). 

We wish to study wave propagation in a non-uniform magnetic field and it is 
mathematically expedient to permit the field to vary in one direction only. Thus 
on taking the x axis of a rectangular Cartesian co-ordinate system parallel to the 
magnetic field gradient (see figure 1) and seeking an equilibrium state of rigid- 
body rotation (u = 0 )  about an axis arbitrarily inclined with that direction we 
arrive at  two possibilities for the equilibrium magnetic field B,(z) consistent with 
the equations of motion: 

= {B,(z), B,(x), 0} B,, B, arbitrary, 

= {B,(z), B,(z), B,} B,, B, linear; B, constant. 
B,(z)( 

Preferring to keep the magnetic field profile as general as possible, we elect to 
study perturbations about the first of these two equilibrium states. Note, how- 
ever, that by so doing we exclude from the basic state a magnetic field component 
in the direction of the magnetic field gradient. The fluid has been assumed to be of 
constant density, so gravitational effects play no role in this problem and we shall 
for convenience speak of the magnetic field gradient as being 'vertical' and like- 
wise refer to the basic magnetic field itself as ' horizontal '. 

Consider now a small departure u = (u , v ,w)  from rigid-body rotation such 
that the inertia term in (2.1) may be neglected in comparison with the Coriolis 
term. This relative motion will be accompanied by a small perturbation 

b = (b,,b,,b,) 

to the magnetic field B,(z). Equations (2.1)-(2.4) then reduce to a set of linear 
partial differential equations and admit plane-wave solutions in which all 
perturbation quantities @ may be written as 

1 ~ .  = ~ [ ~ ( z ) e x p i ( k x + ~ y - - t ) ] .  (2.5) 

Elimination of all variables but f3 leads to the equation 

(2'2- R2)P + (R2P'l.P + PP' - 2iRT)tY + {T2 - P2(k2 + Z 2 )  + iRP'T/P]& = 0,  

(2.6) 
26-2 
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FIGURE 1. An observer rotating about the axis shown with angular velocity fi will see a 
stationary fluid permeated by a stationary magnetic field varying in both magnitude and 
direction. A rectangular Cartesian co-ordinate system is chosen so that the z axis coincides 
with the (one) direction in which the magnetic field varies. There is no basic magnetic field 
component in this direction. 

where P(2) = (V,k+y/Z)2/o2- 1, (2.7) 

R = 2QZ/w, (2.8) 

T = 2(QZk + Q , Z ) / W ,  (2.9) 

%(z> = Bx(z) / (w)4 v,(z) = B&)/(PPP (2.10) 

and primes denote differentiation with respect to z. Other perturbation quantities 
are related to 8 by means of the formulae 

(2.11) 

(2.12) 

= [iTZO + (Pik + R1)8’]/P(k2 + P), 
8 = [ - iTkB + (PiZ- Rk)&‘]/P(k2 + P), 

A 

ob ,  = -(Bxk+B,l)a-i8BL, (2.13) 
A 

ob ,  = -(B,k+B,Z)v^-i&B~, 

~8~ = -(Bxk+B,Z)8. 

(2.14) 

(2.15) 

When the magnetic field is uniform the coefficients of (2.6) are constant and the 
equation has solutions 8 oc exp (imz), where m is a constant vertical wavenumber 
satisfying (1.1). 

Perhaps the most striking feature of (2.6) when the magnetic field is not uni- 
form is its singularity at  a height z, where the field B&) reaches 8 critical value 
such that P2 = R2, i.e. 

[B,(x,) k + B,(z,) 1]2 /PP~2 - 1 = f 2Q&. (2.16) 
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The investigation of wave propagation across field lines in the neighbourhood of 
this ‘critical level’ is the main aim of the present paper. 

3. The critical level 
The singularity of (2.6) at the critical level may evidently be regarded as a 

consequence of the loss of higher derivatives owing to the neglect of dissipative 
effects, and can presumably be resolved by a boundary-layer-type analysis. 
Alternatively, as Miles (1961) has pointed out in connexion with the critical 
level for internal gravity waves in a shear flow (see Booker & Bretherton 1967), 
i t  may be regarded as a consequence of our restricted attention to a single 
sinusoidal component given by (2.5). Accordingly, by posing an initial-value 
problem and then determining its asymptotic solution as t -f co we should be able 
to match the solutions on the two sides of the critical level (even when dissipative 
effects remain excluded). It has, however, proved possible to  resolve the singu- 
larity by simpler means following Booker & Bretherton (1967). The method 
involves allowing the frequency w to have a small imaginary part wi > 0 so that 
the amplitude of the wave a t  any station is slowly growing with time. By thus 
investigating the solutions of (2.6) near z = z, and then taking the limit w,+O 
we obtain a matching condition connecting the solutions on the two sides of the 
critical level. The physical significance of this will be explained in due course, but 
we note here that the method is intimately related to the idea of a ‘radiation 
condition’ and may be thought of as modelling a slow, gradual switch-on of the 
source of the waves as opposed to the sudden switch-on common to many initial- 
value problems (Lighthill 1960, 1967). 

(3.1) 
If we write 

0 = W , + i W i  ( W i  > O ) ,  

(v, + v, 0:=zc - 

then near the critical level, where the Alfvbn velocity V(z) takes a special value 
such that 

( 3 4  
2% 1 = 5 - ,  
w, 

we find w2P = * 2Q2 w, + (2  - 2,) [(v, k + v, z)2];=zc - 2iW,Wi + w:, (3.3) 

where the upper or lower sign is taken according as the upper or lower sign is 
taken in (3.2). If wi is sufficiently small we may neglect the final term, but we 
retain the preceding term because it is imaginary. By multiplying (2.6) by w4 and 
inserting this expansion we find (on using (3.2)) that the coefficient of a’’ is 

We therefore apply the method of Frobenius and seek a power-series solution 
such that near the critical level 

where C is an arbitrary constant. The indicia1 equation for x has two roots and, 
if Qz $. 0, then x = 0 or 2iAsgn[P(z,)R], 
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while if s1, = 0 x = 5 2 iA ,  (3 .7)  

where A = (Q, k + fig l)o,/[( v, k + v, l)2]:,zc. (3 .8 )  

goes from positive values large compared with 
Let us Gst  concentrate on the second solution in (3 .6 ) ,  when i2, $. 0. As x-zc 

L 5 1 2Wi/[(Kk + T$Z)2X=,I {a; + (v ,k  + v,a):=&}* 
through the critical level to values which a8re again large but negative, the argu- 
ment of the complex quantity (3 .4 )  changes smoothly through an angle of nearly 
n. If, having tracked the behaviour of & ( x )  smoothly through the critical level 
in this way, we finally let wi -+ 0 we obtain the matching condition that if 

(3 .9)  i & ( x )  = Cexp [ 2 i A  sgn {P(x,)R)log ( z  -zJ] for x > z, 
@(z)  = Cexp [2iA sgn {P(z,)R} log (2, - z ) ]  then 

x exp [ 2 1 A ( r ~ g n { w ( s 1 ~ k +  QgZ)QsP(z,)}] for x < x,, 

so that the amplitudes on the two sides of the critical level differ by a factor of 
exp 21AJn. 

We now seek to interpret this matching condition physically in terms of wave 
motion. Suppose for the sake of definiteness that w(Q,k + QgZ) QZP(zc) > 0. 
Before taking the limit wi+ 0 the amplitude of a(x) varies in a small neighbour- 
hood of the critical level where ( x  - z,I is comparable with L, and in this neighbour- 
hood the amplitude a t  any particular time is decreasing with height, Since 
wi > 0, however, the amplitude a t  any given height is increasing with time and a 
given amplitude therefore propagates upward with time. In  this sense the solution 
may be regarded as an upward travelling wave which is attenuated by a factor 
exp 21 A1n on passage through the critical level. 

That this solution may be interpreted locally as an upward travelling wave 
may also be seen from energy considerations. The upward transfer of wave 
energy per unit area at any level will be the mean rate of working of the total 
pressure forces (including magnetic pressure) on the fluid above, i.e. pTw,  where 

PT =P+pU-l(Bzbz+Bgbg) (3.10) 

and an overbar denotes an average over a horizontal wavelength. We may 
express Br in terms of the velocity components alone: 

$T = (pw/k ) ( (2 i /w)  (fig&- Q,a)-Pa}, (3.11) 

and since PTW = &(@T6+pT8)7 (3 .12)  

where $ denotes the complex conjugate of $) we may easily show (with the aid of 
(2.11) and (2 .12) )  that 

- 

- 

(3.13) 

Thus on inserting the solution a(z) = 8, exp [ 2 i A  sgn {P(z,)R} log I x  - x c l ]  into 
(3 .13)  we find that 

pTw = PM ( ~ ~ k - +  agl) sgn{P(z,)Q,w}. (3.14) 
- 

k2+P 
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The amplitude l@ol will, according to (3.9), be different on the two sides of the 
critical level, but in both cases energy flows upward with time. 

If w(R2,k+R;2,Z)R,P(xc) is negative, both the above arguments lead to the 
conclusion that the second solution in (3.6) represents a downward travelling 
wave, again attenuated by a factor exp (21Aln) on passage through the critical 
level. The energy flux in the neighbourhood of the critical level associated with 
the other solution in (3.6) (a@) = constant, representing an unattenuated wave) is 

(3.15) 

and is therefore opposite in direction to that associated with the solution we have 
just investigated (cf. equation (3.14)). When Q, $; 0 we therefore conclude that a 
wave crossing its critical level at  a station z = z, such that 

(V, (x , )  k + V, (x , )  Z}”w2 - 1 = * 2n,/w (3.16) 

will emerge either without attenuation or attenuated by a factor exp 2JAl;rr, 

W I R , P ( z c ) ( ~ ~ k + R ; 2 , z ) w ~  0’ (3.17) 
according as 

where W is its velocity of propagation in the x direction. 
The author’s main interest, for the reasons given in the introduction, lies in the 

slow ‘hydromagnetic-inertial ’ waves characteristic of a ‘rapidly ’ rotating fluid. 
Their frequency w will in general be very small compared with R, (see equation 
(1.6)) so that the critical level will be where 

IV,(z,)k+~(z,)ZI + 12RplB. (3.18) 

We accordingly find that for these waves 

(3.19) 

Their attenuation factor will thus be very substantial provided only that the 
horizontal wavelengths involved are marginally less than the distance over which 
the magnetic field varies by a factor of order unity. They will therefore penetrate 
their critical level effectivelyfrom one side only (such that WR,( Q, k + Qv Z)o < 0). 
This ‘valve ’ effect is the main result of this paper. 

If, on the other hand, the fluid is not rotating ‘rapidly’ (and w/Q, is thus 
typically of order unity), there will in general be two distinct ‘ critical ’ values of 
(V,k+&ZI given by (3.16). Since the sign of P(z,)Q,w will be positive for one and 
negative for the other the two ‘valves, will clearly work in opposition, one 
effectively transmitting only upward-moving waves and the other transmitting 
only downward-moving waves. Note that (for a given w )  the two critical levels 
become located closer to each other as R, decreases. Indeed, as a,-+ 0 it  becomes 
increasingly difficult to resolve the individual ‘valve’ effects, for no sooner is a 
wave transmitted by one level than it is attenuated by the other. Finally, if 
R, = 0, the two critical levels merge into one at a level x = z, such that 

(3.20) {V,(z,) k + T g x c ) 2 } 2  = o2. 
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Identical considerations to those above (which, we recall, have all been derived 
on the assumption that Sz, =+ 0)  but based on the roots (3.7) of the indicia1 
equation then lead to the conclusion that hydromagnetic waves are attenuated by 
a factor exp2lAIn whichever side they come from. The ‘valve’ effect therefore 
depends essentially on the presence of a rotation component in the direction of 
the magnetic field gradient. 

In the next section we look a t  these critical levels from a somewhat different 
point of view which is in some ways easier to picture physically. Before doing so, 
however, we remark that by differentiating (3.13) and using (2.6) and its complex 
conjugate as expressions for a” and G” respectively it may be shown that 

d(l.’rw)/dz = 0, (3.21) 

so that the meanJlux of wave energy per unit area acrossjeld lines is  independent of 
height. This result holds for all magnetic field profiles and breaks down only at 
the critical level, where there is a discontinuity (see (3.9) and (3.14)). It has a 
simple interpretation when considered in the light of developments in the 
following section. 

4. Wave propagation in a weak magnetic field gradient 
When the magnetic field varies only slightly over distances of the order of a 

wavelength the concept of a wave group is extremely helpful. This is a time- 
dependent train of waves of sufficient regularity for a local frequency, wave- 
number and amplitude to be everywhere approximately defined, though these 
may vary with position and time. We shall focus attention on the propagation of 
these quantities rather than on the individual wave crests of which the train is 
composed. There is therefore a fundamental difference between this approach and 
that in the previous section, where w ,  Land 1 werejxed in space and time. While it is 
natural that when the magnetic field varies only slightly over distances of the 
order of a wavelength the information contained in the uniform-field dispersion 
relation (1.1) should be of direct value, it  is perhaps prudent f i s t  to clarify the 
interpretation of this relationship when the magnetic field varies with z. 

If w and K vary with position and time (and V varies with z only) we may write 

(4.1) 
(1.1) in the form 

w=P(k ,Z ,m,z )  

and then formally define the ‘group velocity’ 

which therefore also varies with position and time. The significance of this group 
velocity as defined above (a result which we shall not prove here; see for example 
Whitham (1960), Lighthill (1965), Bretherton (1966)) is that an observer fixing 
his gaze on a point moving through the fluid everywhere with the local group 
velocity u, will observe constant values of w ,  k and 1. Because the magnetic field 
varies with z, however, he will observe changes in the vertical wavenumber m. 
Thus the role of (1.1) when the magnetic field is not uniform is (a )  to enable us, 
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having selected the particular group we wish to track (i.e. having picked parti- 
cular values of W ,  k and I ) ,  to calculate the vertical wavenumber at  each level in 
terms of the (known) magnetic field at that level and then ( b )  to permit us to use 
these values of rn and V to calculate the group velocity at  every level and in this 
way compute the trajectory of the group. We now use this procedure to study the 
propagation of wave groups in the neighbourhood of the critical level. 

Writing the dispersion relation (1.1) as 

Q, k + Ru I + Q2rn + (Q, k + R, I + Q 2 r n ) 2  +(V,k+VvI)y= 
(k2+/2+m2)& - (  k2+P+rn2 

(4.3) W = f  

and then converting it to a formula for rn in terms of the local Alfv6n velocity 
V(z) = {V,(z), V,(z ) ,  0},  we find that 

{ [ ( V . K ) ~ - W ~ ] ~ - ~ W ~ ~ ~ } ~ ~ ~ -  8 w 2 ~ , ( f i , k +  Q,l)rn 

+((ka+I2) [(v.K)2-W2]2-4W2(~~kf Qvl)2} = 0. (4.4) 

By confining attention first to the case Qz =k 0 it is clear that as the group ap- 
proaches its critical level x = z,, at which the Alfv6n velocity takes a value 
V, = V(z,) given by 

one root of (4.4) increases indefinitely and is given asymptotically by 

{(v,. K)’- W2}’ = 4W2Q:, 

{[(V. K ) ~ -  u2I2 - 4 ~ ~ R 2 , } m  = 8w2Q2(Q,k + Q,Z).  

(4-5) 

(4.6) 

The vertical component of group velocity wg at any level can be computed from 
(4.3) and is given by 

4 ~ ~ 1 8 . K \  { (V.K)2+(8 .K)2 /K2}*WgSgn{w2-  ( v . K ) 2 }  

= { ~ W ~ Q ~ - [ ( V . K ) ~ - W ~ ] ~ } ~ + ~ W ~ Q ~ ( Q , ~ + R ~ Z ) .  (4.7) 

The asymptotic behaviour of wg corresponding to the root (4.6) is therefore given 

by 4wm2) R2\ {(V,. K ) ~  + QEp wg sgn{w2 - (V, . ~ ) 2 }  = - 4w2RZ,(R,k + Q$). (4.8) 

In  the neighbourhood of the critical level 

v,(z) = v,(z,) + V&) (z  - 2,) + . . -, 
v,(z) = v,(z,) + V&) (2 - zc) + . . . , 

and from (4.6) we find that Irnl increases indefinitely as Iz - ~ ~ 1 - l .  According to 
(4.8) wg then tends to zero as (2 - z,)2 and this group is therefore neither trans- 
mitted nor reflected at its critical level but instead never reaches it in afinite time. 
As the critical level is approached 

the group is therefore effectively ‘captured’ in this neighbourhood and con- 
strained thereafter to propagate almost along the lines of force. This wave group 
clearly approaches the level from a, direction such that 

(4.10) Wg Q,{ (v, . K)’ - W2} (QZ k fiv I )  W > 0. 
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F I G ~ E  2. A simple example of a hydromagnetic-inertial wave group meeting a critical level. 
The system is supposed two-dimensional so that waves propagate in the 2, z plane only. A 
wave group with frequency w and horizontal wavenumber k will only penetrate its critical 
level if w, R, R, ko < 0. If wk > 0 then in system (i) the wave can penetrate its critical level 
from above but not from below. This is the case illustrated. If wk < 0, on the other hand, 
the opposite is true. Even if ok is positive the wave can still penetrate its critical level from 
below if the fluid rotates about a different axis (ii) (although the location of the critical 
level will then have changed), but merely reversing the sense of the rotation (iii) evidently 
does not alter which way the ‘valve’ works. 

Theother root of (4.4) tends to a finitevaluem, as the criticallevel isapproached 
(given by neglecting the m2 term in (4.4)) and wg then tends to a non-zero value 
given by 

4WIKcl  IQ. Kcl {(v,. K)’+ (a. Kc)2/1Kc12}11 sgn [w2 - (v,. K)’lWg = 4@2fi2(fiz,~ + fi,l), 
(4.11) 

where K, = (k, Z, m,). This wave, which approaches from a direction such that 

(4.12) 

is therefore transmitted across the critical field line. 
Thus, by focusing attention on a particular wave group by prescribing values of 

w ,  k and 2, we find that as it approaches its critical level it will be transmitted in 
one direction only across the critical field line and that the criterion for transmis- 
sion or ‘ capture’ is 

Wg n2{(v,. K)2 - U2} (a, k + fi, I )  W 2 0 (4.13) 
(cf. equation (3.17)). 

Por a hydromagnetic-inertial wave group in a ‘rapidly’ rotating fluid the 
critical Alfvh speed is given to  a good approximation by 

( v , . K ) 4  = 4W2fiR,2, (4.14) 

and there is transmission or ‘ capture’ according as 

W g f i 2 ( S 2 , k + f i ~ z ) w ~ 0 .  (4.15) 

Critical levels are likely to exert an important influence on these waves; consider a 
‘slow’ wave group with vertical wavenumber m, at a station where the local 
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Alfven velocity is V,. The local dispersion relation (1.6) then relates m, to V,: 

(4.16) 

and we therefore find that V, is related to the critical Alfvh velocity V, by 

(4.17) 

Taking, typically, k,Z and m, of comparable magnitude we conclude that 
~ V c ~ / ~ V o ~  will be of order unity, except when the rotation axis is almost normal to 
the magnetic field gradient. 

When Q, = 0 and the rotation axis is normal to the magnetic field gradient the 
critical Alfvbn velocity is given by (V,. K ) ~  = w2 and a reconsideration of the above 
analysis (in which we assumed Q, $1 0) leads to the conclusion that waves ap- 
proaching this level are ‘captured’ whichever side they come from; no trans- 
mission is possible. ‘Slow’ waves in a ‘rapidly’ rotating fluid will still encounter 
such levels in this case, but they will clearly be located where the magnetic field 
either (a) takes an atypically low value (i.e. IV,l N I W \ / K  N &IVol, see (1.6)) or (b)  
becomes almost perpendicular to the horizontal wavenumber vector (k, I, 0). 

We note that the conclusions of this section are entirely consistent with those 
of the previous one, for although some transmission was then always possible 
the attenuation factor exp 21Aln increases indefinitely in the short wavelength 
limit, upon which the above analysis is based (see equation (3.19)). While the 
results of that section indicate that the critical level acts effectively as a valve 
even for IA I = 1 (for the attenuation factor exp 277 is still very substantial), it is in 
fact desirable that IAl takes a rather higher value than this if the interpretation 
of the local solutions in that section as travelling waves is to be fully substantiated. 
To see this, note that the solutions (3.9) are both highly oscillatory near z = 2, and 
that they both have a local vertical wavenumber 

m = 2A sgn {P(z,)R}/(x - 2,). (4.18) 

The local dispersion relation (4.4) in the slowly varying field case may be used to 
show that the vertical wavenumber of a group about to be ‘ captured ’ is precisely 
(4.18) and the identification of (3.9) as travelling waves made in $ 3  is thus 
strongly supported by this comparison. One must note, however, that this wave- 
number is a function ofz, so that we may compute the fractional change in wave- 
number over a vertical wavelength by first differentiating 

(4.19) 

and then putting 6z = 2711 Iml , so that 

l6m/ml = n/lAl. (4.20) 

The significance of IAJ not being too small is then clear, for only then will the 
fractional change in vertical wavenumber over a vertical wavelength be reason- 
ably small and the concept of a local vertical wavenumber meaningful. 
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These considerations therefore neatly relate the two different methods of 
attack employed in this paper. The picture presented in this section, with wave- 
numbers varying only very slightly over distances of the order of a wavelength 
(the essence of the ‘weak’ magnetic field gradient assumption) and complete 
‘ capture’ rather than partial transmission, arises naturally out of the picture 
presented in $ 3  when \A1 B 1 (formally, as \A\ -+co). We finally relate the two 
approaches further by considering the propagation of wave energy. 

When the magnetic field varies only slightly over distances of the order of a 
wavelength we may use (2.11)-(2.15) and (4.3) to express the mean wave energy 
per unit volume 

B = ~ p ( u Z + v 2 + W 2 ) + ( 1 / 2 ~ ) ( b ~ + b : + b ~ )  (4.21) 

in terms of the local values of w, k ,  I ,  m, V(z) and the vertical velocity amplitude 

(4.22) 

By a somewhat lengthy analysis [which will be omitted here in the interests of 
saving space, for it is identical in form to that of Bretherton (1966), see Acheson 
(1971)] it may be shown that 

@/at + v. (u,B) = 0, (4.23) 

so that, for any volume element ST whose boundaries move everywhere with the 
local group velocity, Bar is conserved. Wave energy is therefore conserved as the 
group moves. This result may be simply correlated with (3.21) for, if instead of a 
group we consider once again a single sinusoidal component with w ,  k and 1 fixed 
in space and time, thenu, (as defined by (4.2)), like m, becomes a function of x only, 
so also does E ,  and (4.23) reduces to Ewg = constant. When the magnetic field 
varies only slightly over distances of the order of a wavelength we may readily 
show by using (3.13), (4.7), (4.3) and (4.22) that 

p j  = Ew,. (4.24) 

It therefore follows that p 6  is constant. The result (3.21) derived for a single 
sinusoidal component (but without the short wavelength approximation made 
here) is thus intimately related to the fact that in the present system wave energy 
is propagated with the group velocity. (For a system in which this is not so see 
Bretherton (1966), Bretherton & Garrett (1968).) In  view of this one can therefore 
envisage situations in which the overall effect of the ‘valve’ action of critical 
levels for hydromagnetic waves in a rotating fluid could be a continuous build-up 
of energy in a particular region, reminiscent of the well-known ‘ greenhouse’ 
effect. 

- 

5. Discussion 
Comparison of the critical-level properties discussed above with those for 

internal gravity waves in a shear flow (Bretherton 1966; Booker & Bretherton 
1967; Jones 1967) reveals certain novel features. Internal gravity waves with 
frequency w and horizontal (in the usual sense: normal to gravity 8 = (0 ,  0,g))  
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wavenumber components k , l  propagating in a shear flow (Ux(z), U,(Z), 0) are 
highly attenuated at  a level at  which the Doppler-shifted frequency w - Uxk - U,l 
vanishes, and this attenuation takes place no matter how the group approaches its 
critical level. Contrast this with the results above: a hydromagnetic wave in a 
rotating fluid approaching its critical level from one side will be highly attenuated, 
but it if approaches from the other side it will be transmitted without attenuation. 
The flux of energy across fieldlines associated with the attenuated wave was found 
to be different on the two sides of the critical level (see (3.9) and (3.14)) and 
accordingly most of the energy of the wave must be absorbed there into, presu- 
mably, a change in the mean magnetic field in that neighbourhood, the establish- 
ment of a small mean flow or both. A full investigation of exactly what does 
become of the attenuated wave’s energy has, however, not yet been carried out, 
although the author hopes to include such considerations in a future paper at 
present in preparation (Acheson 19723). 

Note that the phenomenon of critical-layer absorption does not appear to 
depend crucially on the presence of a mean shear flow. A non-uniform magnetic 
j ield is evidently capable of giving rise to critical-layer absorption provided that 
some other restoring mechanism is available to allow hydromagnetic wave 
energy to propagate across field lines. While this has been provided above by the 
Coriolis force due to the fluid’s rotation, we shall see in a companion paper 
(Acheson 1972b) how the action of gravity on a strati$ed fluid can, through the 
action of the buoyancy force, accomplish similar effects. 

To conclude that these critical levels invariably accompany hydromagnetic 
wave propagation in ti rotating fluid would be premature. It is first necessary to 
show that their properties (and indeed their very existence) are not especially 
sensitive to small deviations from the strict assumptions of the present theory. 
The main assumptions are (a) that the fluid is inviscid and perfectly conducting 
(b )  that the fluid is homogeneous and (c)  that the magnetic field gradient is normal 
to the field itself. 

Perhaps the most obvious inherent assumption is (a). In  the short wavelength 
approximation of § 4 the vertical wavenumber m increases indefinitely as a group 
is ‘captured’ so that in practice, rather than having the picture of a group taking 
an infinite time to reach the critical level but retaining its identity indefinitely, 
we have the picture of a group whose associated velocity shear rapidly increases 
until the effects of small but finite viscosity and electrical resistivity come into 
play and destroy the group as a coherent entity. Provided dissipative effects are 
in some sense small, however, the author does not expect the overall critical-level 
properties to be changed, as a numerical boundary-layer-type analysis for the 
critical layer for internal gravity waves leads to  the .same attenuation factor as 
that found by an analysis similar to that presented in $ 3  (Hazel 1967). 

Relaxation of assumption (b )  is vital if we wish to discuss these critical levels 
in the context of geophysical or astrophysical problems since the effects of 
density stratification are then often important. This will be one of the topics 
dealt with in the companion paper mentioned previously. 

If the basic magnetic field has a constant vertical component B, (which, as we 
have seen, is permissible if Bx and Bu are linear) then within the short wavelength 
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approximation the local dispersion relation will take the form 

By focusing attention on a particular group (i.e. selecting o, k and I )  it becomes 
clear that however small B, may be m can no longer increase indefinitely in any 
circumstances ! This does not, of course, automatically imply that these critical- 
level phenomena are exceptional, for the WKB (short wavelength) approxima- 
tion (by its asymptotic nature) is incapable of predicting partial transmission; it 
can predict only total transmission, reflexion or ‘capture’ (Bretherton 1966). 
In  practice one expects that if B, is in some sense small it  will enable some trans- 
mission (just as a field (BJz), B,(z), 0) enables some transmission except in the 
short wavelength limit) but that the overall ‘valve ’ effect will persist. We remark, 
however, in conclusion that how small the basic magnetic field component in the 
direction of the magnetic field gradient must be for the overall critical-level 
properties established above to be qualitatively correct is not known. The 
resolution of this problem should provide a key factor in the determination of how 
likely these critical levels are to occur in natural systems (such as the earth’s 
liquid core) where the magnetic field configuration may be extremely complicated. 

The research reported in this paper forms part of the author’s Ph.D. thesis 
submitted to  the University of East Anglia. The author wishes to thank Pro- 
fessor M. B. Glauert and Professor R. Hide for their help and is grateful to the 
Science Research Council for their financial support through a Research Student- 
ship. 
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